Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38703194

RESUMEN

PURPOSE: Patients with age-related hearing loss complain often about reduced speech perception in adverse listening environment. Studies on animals have suggested that cochlear synaptopathy may be one of the primary mechanisms responsible for this phenomenon. A decreased wave I amplitude in supra-threshold auditory brainstem response (ABR) can diagnose this pathology non-invasively. However, the interpretation of the wave I amplitude in humans remains controversial. Recent studies in mice have established a robust and reliable mathematic algorithm, i.e., curve curvature quantification, for detecting cochlear synaptopathy. This study aimed to determine whether the curve curvature has sufficient test-retest reliability to detect cochlear synaptopathy in aging humans. METHODS: Healthy participants were recruited into this prospective study. All subjects underwent an audiogram examination with standard and extended high frequencies ranging from 0.125 to 16 kHz and an ABR with a stimulus of 80 dB nHL click. The peak amplitude, peak latency, curvature at the peak, and the area under the curve of wave I were calculated and analyzed. RESULTS: A total of 80 individuals with normal hearing, aged 18 to 61 years, participated in this study, with a mean age of 26.4 years. Pearson correlation analysis showed a significant negative correlation between curvature and age, as well as between curvature and extended high frequency (EHF) threshold (10-16 kHz). Additionally, the same correlation was observed between age and area as well as age and EHF threshold. The model comparison demonstrated that the curvature at the peak of wave I is the best metric to correlate with EHF threshold. CONCLUSION: The curvature at the peak of wave I is the most sensitive metric for detecting cochlear synaptopathy in humans  and may be applied in routine diagnostics to detect early degenerations of the auditory nerve.

2.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38585917

RESUMEN

Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r=-0.407), but noise-exposure effects are weak (r=-0.152). We conclude that noise-exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.

3.
BMC Public Health ; 24(1): 953, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570765

RESUMEN

OBJECTIVE: The diagnosis of hidden hearing loss (HHL) in calm state has not yet been determined, while the nutritional status is not involved in its pathogenic risk factors. In utero iron deficiency (ID) may delay auditory neural maturation in infants. We evaluated the association between ID and HHL as well as the modification effect of socioeconomic status (SES) on this association in newborns. STUDY DESIGN: We included 859 mother-newborns from the baseline of this observational northeast cohort. Data on exposure assessment included iron status [maternal hemoglobin (Hb) and neonatal heel prick serum ferritin (SF)] and SES (occupation, education and income). Auditory neural maturation was reflected by auditory brainstem response (ABR) testing and electrocochleography (ECochG). RESULTS: Iron status and SES were independently and jointly associated with the prediction of neonatal HHL by logistic and linear regression model. The mediation effects were performed by Process. ID increased absolute latency wave V, interpeak latency (IPL) III-V, and summting potentials (SP) /action potentials (AP), which were combined as HHL. Low SES showed the highest risk of HHL and the highest levels of related parameters in ID newborns. Moreover, after Corona Virus Disease 2019 (COVID-19) were positive, preschool children who experience ID in neonatal period were more likely to suffer from otitis media with effusion (OME). High SES also showed similar risk effects. CONCLUSION: Both low and high SES may strengthen the risk of ID on neonatal HHL in Northeast China.


Asunto(s)
Deficiencias de Hierro , Madres , Lactante , Femenino , Preescolar , Humanos , Recién Nacido , Pérdida de Audición Oculta , Hierro , Clase Social
4.
Artículo en Chino | MEDLINE | ID: mdl-38677986

RESUMEN

Objective: To explore the mechanism of noise-induced hidden hearing loss by proteomics. Methods: In October 2022, 64 SPF male C57BL/6J mice were divided into control group and noise exposure group with 32 mice in each group according to random sampling method. The noise exposure group was exposed to 100 dB sound pressure level, 2000-16000 Hz broadband noise for 2 h, and the mouse hidden hearing loss model was established. Auditory brainstem response (ABR) was used to test the change of hearing threshold of mice on the 7th day after noise exposure, the damage of basal membrane hair cells was observed by immunofluorescence, and the differentially expressed proteins in the inner ear of mice in each group were identified and analyzed by 4D-Label-free quantitative proteomics, and verified by Western blotting. The results were statistically analyzed by ANOVA and t test. Results: On the 7th day after noise exposure, there was no significant difference in hearing threshold between the control group and the noise exposure group at click and 8000 Hz acoustic stimulation (P>0.05) . The hearing threshold in the noise exposure group was significantly higher than that in the control group under 16000 Hz acoustic stimulation (P<0.05) . Confocal immunofluorescence showed that the basal membrane hair cells of cochlear tissue in noise exposure group were arranged neatly, but the relative expression of C-terminal binding protein 2 antibody of presynaptic membrane in middle gyrus and basal gyrus was significantly lower than that in control group (P<0.05) . GO enrichment analysis showed that the functions of differentially expressed proteins were mainly concentrated in membrane potential regulation, ligand-gated channel activity, and ligand-gated ion channel activity. KEGG pathway enrichment analysis showed that differentially expressed proteins were significantly enriched in phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathway, NOD-like receptor signaling pathway, calcium signaling pathway, etc. Western blotting showed that the expression of inositol 1, 4, 5-trisphosphate receptor 3 (Itpr3) was increased and the expression of solute carrier family 38 member 2 (Slc38a2) was decreased in the noise exposure group (P<0.05) . Conclusion: Through proteomic analysis, screening and verification of the differential expression proteins Itpr3 and Slc38a2 in the constructed mouse noise-induced hidden hearing loss model, the glutaminergic synaptic related pathways represented by Itpr3 and Slc38a2 may be involved in the occurrence of hidden hearing loss.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Pérdida Auditiva Provocada por Ruido , Ratones Endogámicos C57BL , Ruido , Proteómica , Animales , Ratones , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Masculino , Ruido/efectos adversos , Modelos Animales de Enfermedad , Umbral Auditivo , Oído Interno/metabolismo , Pérdida de Audición Oculta
5.
Cell Mol Life Sci ; 81(1): 80, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334784

RESUMEN

Dominant optic atrophy (DOA) is one of the most prevalent forms of hereditary optic neuropathies and is mainly caused by heterozygous variants in OPA1, encoding a mitochondrial dynamin-related large GTPase. The clinical spectrum of DOA has been extended to a wide variety of syndromic presentations, called DOAplus, including deafness as the main secondary symptom associated to vision impairment. To date, the pathophysiological mechanisms underlying the deafness in DOA remain unknown. To gain insights into the process leading to hearing impairment, we have analyzed the Opa1delTTAG mouse model that recapitulates the DOAplus syndrome through complementary approaches combining morpho-physiology, biochemistry, and cellular and molecular biology. We found that Opa1delTTAG mutation leads an adult-onset progressive auditory neuropathy in mice, as attested by the auditory brainstem response threshold shift over time. However, the mutant mice harbored larger otoacoustic emissions in comparison to wild-type littermates, whereas the endocochlear potential, which is a proxy for the functional state of the stria vascularis, was comparable between both genotypes. Ultrastructural examination of the mutant mice revealed a selective loss of sensory inner hair cells, together with a progressive degeneration of the axons and myelin sheaths of the afferent terminals of the spiral ganglion neurons, supporting an auditory neuropathy spectrum disorder (ANSD). Molecular assessment of cochlea demonstrated a reduction of Opa1 mRNA level by greater than 40%, supporting haploinsufficiency as the disease mechanism. In addition, we evidenced an early increase in Sirtuin 3 level and in Beclin1 activity, and subsequently an age-related mtDNA depletion, increased oxidative stress, mitophagy as well as an impaired autophagic flux. Together, these results support a novel role for OPA1 in the maintenance of inner hair cells and auditory neural structures, addressing new challenges for the exploration and treatment of OPA1-linked ANSD in patients.


Asunto(s)
Sordera , Pérdida Auditiva Central , Atrofia Óptica Autosómica Dominante , Animales , Humanos , Ratones , GTP Fosfohidrolasas/genética , Pérdida Auditiva Central/genética , Mutación , Atrofia Óptica Autosómica Dominante/genética
6.
Trends Hear ; 28: 23312165241227818, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38291713

RESUMEN

The past decade has seen a wealth of research dedicated to determining which and how morphological changes in the auditory periphery contribute to people experiencing hearing difficulties in noise despite having clinically normal audiometric thresholds in quiet. Evidence from animal studies suggests that cochlear synaptopathy in the inner ear might lead to auditory nerve deafferentation, resulting in impoverished signal transmission to the brain. Here, we quantify the likely perceptual consequences of auditory deafferentation in humans via a physiologically inspired encoding-decoding model. The encoding stage simulates the processing of an acoustic input stimulus (e.g., speech) at the auditory periphery, while the decoding stage is trained to optimally regenerate the input stimulus from the simulated auditory nerve firing data. This allowed us to quantify the effect of different degrees of auditory deafferentation by measuring the extent to which the decoded signal supported the identification of speech in quiet and in noise. In a series of experiments, speech perception thresholds in quiet and in noise increased (worsened) significantly as a function of the degree of auditory deafferentation for modeled deafferentation greater than 90%. Importantly, this effect was significantly stronger in a noisy than in a quiet background. The encoding-decoding model thus captured the hallmark symptom of degraded speech perception in noise together with normal speech perception in quiet. As such, the model might function as a quantitative guide to evaluating the degree of auditory deafferentation in human listeners.


Asunto(s)
Pérdida Auditiva , Percepción del Habla , Animales , Humanos , Umbral Auditivo/fisiología , Ruido/efectos adversos , Estimulación Acústica , Percepción Auditiva/fisiología
7.
Laryngoscope ; 134(2): 907-910, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37497866

RESUMEN

OBJECTIVES: Extended high-frequency (EHF) audiometry elicits pure-tone thresholds at frequencies above 8 kHz, which are not included in routine clinical testing. This study explores the utility of EHF audiometry in patients with various audiologic symptoms despite normal-hearing thresholds at ≤8 kHz. METHODS: A retrospective review was performed of all patients receiving conventional (250-8 kHz) and EHF (9-20 kHz) audiometry at a tertiary otological referral center between April 2021 and August 2022. Only patients with audiologic symptoms and pure-tone thresholds ≤25 dB HL at ≤8 kHz bilaterally on routine testing were included in subsequent analysis. EHF-PTA was defined for each ear as an average of the air conduction thresholds at 9.0, 10.0, 11.2, 12.5, 14.0, 16.0, 18.0, and 20.0 kHz. RESULTS: Of the 50 patients who received EHF testing, 40 had audiologic symptoms and normal conventional audiograms at ≤8 kHz. Twenty-five of the 40 (62.5%) were found to have hearing loss in the highest frequencies. Patients with EHF hearing loss (EHF-HL) were more likely to report subjective hearing loss. Age was significantly greater in those with EHF-HL compared with those without EHF-HL, and age was positively correlated with the degree of EHF-HL. CONCLUSION: EHF testing correlates with audiologic symptoms in patients with normal testing at ≤8 kHz and may be considered when standard audiometry is normal. Additional data are warranted to create an evidenced-based, clinical algorithm for EHF audiometry that can guide treatment, direct mitigation strategies, and potentially identify those at higher risk of hearing loss over time. LEVEL OF EVIDENCE: 4 Laryngoscope, 134:907-910, 2024.


Asunto(s)
Sordera , Audición , Humanos , Umbral Auditivo , Pérdida Auditiva de Alta Frecuencia/diagnóstico , Audiometría de Tonos Puros , Estudios Retrospectivos
8.
Hear Res ; 441: 108927, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096707

RESUMEN

Cochlear synaptopathy is a common pathology in humans associated with aging and potentially sound overexposure. Synaptopathy is widely expected to cause "hidden hearing loss," including difficulty perceiving speech in noise, but support for this hypothesis is controversial. Here in budgerigars (Melopsittacus undulatus), we evaluated the impact of long-term cochlear synaptopathy on behavioral discrimination of Gaussian noise (GN) and low-noise noise (LNN) signals processed to have a flatter envelope. Stimuli had center frequencies of 1-3kHz, 100-Hz bandwidth, and were presented at sensation levels (SLs) from 10 to 30dB. We reasoned that narrowband, low-SL stimuli of this type should minimize spread of excitation across auditory-nerve fibers, and hence might reveal synaptopathy-related defects if they exist. Cochlear synaptopathy was induced without hair-cell injury using kainic acid (KA). Behavioral threshold tracking experiments characterized the minimum stimulus duration above which animals could reliably discriminate between LNN and GN. Budgerigar thresholds for LNN-GN discrimination ranged from 40 to 60ms at 30dB SL, were similar across frequencies, and increased for lower SLs. Notably, animals with long-term 39-77% estimated synaptopathy performed similarly to controls, requiring on average a ∼7.5% shorter stimulus duration (-0.7±1.0dB; mean difference ±SE) for LNN-GN discrimination. Decision-variable correlation analyses of detailed behavioral response patterns showed that individual animals relied on envelope cues to discriminate LNN and GN, with lesser roles of FM and energy cues; no difference was found between KA-exposed and control groups. These results suggest that long-term cochlear synaptopathy does not impair discrimination of low-level signals with different envelope statistics.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Melopsittacus , Humanos , Animales , Cóclea/patología , Ácido Kaínico/toxicidad , Estimulación Acústica/efectos adversos , Umbral Auditivo/fisiología , Pérdida de Audición Oculta , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/patología
9.
CoDAS ; 36(2): e20230032, 2024. tab, graf
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1520740

RESUMEN

RESUMO Objetivo Identificar as definições fisiopatológicas adotadas pelos estudos que investigaram a "sinaptopatia coclear" (SC) e "perda auditiva oculta" (PAO). Estratégia de pesquisa Utilizou-se a combinação de unitermos "Auditory Synaptopathy" or "Neuronal Synaptopathy" or "Hidden Hearing Loss" com "etiology" or "causality" or "diagnosis" nas bases de dados EMBASE, Pubmed (MEDLINE), CINAHL (EBSCO) e Web of Science. Critérios de seleção Incluiu-se estudos que investigaram a SC ou PAO em humanos com procedimentos comportamentais e/ou eletrofisiológicos. Análise dos dados Realizou-se a análise e extração de dados quanto a terminologia, definição e população estudada. Resultados Foram incluídos 49 artigos. Destes, 61,2% utilizaram a terminologia SC, 34,7% ambos os termos e 4,1% utilizaram PAO. As condições mais estudadas foram exposição ao ruído e zumbido. Conclusão A terminologia SC foi empregada na maioria dos estudos, com referência ao processo fisiopatológico de desaferenciação entre as fibras do nervo coclear e as células ciliadas internas


ABSTRACT Purpose To identify the pathophysiological definitions adopted by studies investigating "cochlear synaptopathy" (CS) and "hidden hearing loss" (HHL). Research strategies The combination of keywords "Auditory Synaptopathy" or "Neuronal Synaptopathy" or "Hidden Hearing Loss" with "etiology" or "causality" or "diagnosis" was used in the databases EMBASE, Pubmed (MEDLINE), CINAHL (EBSCO), and Web of Science. Selection criteria Studies that investigated CS or HHL in humans using behavioral and/or electrophysiological procedures were included. Data analysis Data analysis and extraction were performed with regard to terminology, definitions, and population. Results 49 articles were included. Of these, 61.2% used the CS terminology, 34.7% used both terms, and 4.1% used HHL. The most-studied conditions were exposure to noise and tinnitus. Conclusion CS terminology was used in most studies, referring to the pathophysiological process of deafferentiation between the cochlear nerve fibers and inner hair cells.

10.
Neurobiol Dis ; 186: 106280, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37666363

RESUMEN

Considerable evidence of reactive oxygen species (ROS) involvement in cochlear hair cell (HC) loss, leading to acquired sensorineural hearing loss (SNHL), were reported. Cochlear synaptopathy between HCs and spiral ganglion neurons has been gathering attention as a cochlear HC loss precursor not detectable by normal auditory evaluation. However, the molecular mechanisms linking ROS with HC loss, as well as the relationship between ROS and cochlear synaptopathy have not been elucidated. Here, we examined these linkages using NOX4-TG mice, which constitutively produce ROS without stimulation. mRNA levels of Piccolo 1, a major component of the synaptic ribbon (a specialized structure surrounded by synaptic vesicles in HCs), were decreased in postnatal day 6 NOX4-TG mice cochleae compared to those in WT mice; they were also decreased by noise exposure in 2-week-old WT cochleae. As noise exposure induces ROS production, this suggests that the synaptic ribbon is a target of ROS. The level of CtBP2, another synaptic ribbon component, was significantly lower in NOX4-TG cochleae of 1-month-old and 4-month-old mice compared to that in WT mice, although no significant differences were noted at 1.5- and 2-months. The decrease in CtBP2 plateaued in 4-month-old NOX4-TG, while it gradually decreased from 1 to 6 months in WT mice. Furthermore, CtBP2 level in 2-month-old NOX4-TG mice decreased significantly after exposure to cisplatin and noise compared to that in WT mice. These findings suggest that ROS lead to developmental delays and early degeneration of synaptic ribbons, which could be potential targets for novel therapeutics for ROS-induced SNHL.


Asunto(s)
Pérdida Auditiva Sensorineural , Sinapsis , Animales , Ratones , Especies Reactivas de Oxígeno , Vesículas Sinápticas , Citoesqueleto , Factores de Transcripción , Pérdida Auditiva Sensorineural/inducido químicamente , Pérdida Auditiva Sensorineural/genética
11.
Med. segur. trab ; 69(272): 187-194, Sep 30, 2023. tab
Artículo en Inglés | IBECS | ID: ibc-232439

RESUMEN

Introducción: La sinaptopatía coclear por exposición a ruido (SCER) es definida como una alteración funcional transitoria o permanente de las sinapsis en cinta de las células pilosas internas de la cóclea. Este artículo tiene el objetivo de comentar la utilidad de la identificación temprana de la pérdida auditiva oculta por SCER basado en marcadores audiológicos y en la metodología usada en grupos clínicos para su búsqueda.Método: Revisión de la literatura relacionada en bases científicas y la narración descriptiva de los resultados.Resultados: La SCER produce una pérdida auditiva oculta en pacientes con audiograma normal, principalmente obreros o individuos expuestos a niveles de ruido intenso. Los principales estudios de identificación de la SCER han sido realizados principalmente en estudiantes universitarios o en músicos.Conclusiones: Son necesarios ajustes en la política de salud auditiva para una amplia identificación temprana de la SCER en las poblaciones en riesgo para la pérdida auditiva oculta y luchar por una regulación del daño. (AU)


Introduction: Cochlear synaptopathy after noise exposure (CSNE) is defined as the transient or permanent func-tional damage to the ribbon synapsis of the inner hair cells of the cochlea. This article has the objective of comment the usefulness of early identification of the hidden hearing loss after CSNE based on audiological markers and in changes in the clinical methodology in clinical groups for its searching.Method: Review of related literature in scientific databases and narrative description of results.Results: CSNE results in a hidden hearing loss in patients with normal pitch audiogram, mainly workers or indi-viduals exposed to high noise levels. The main studies of identification have been performed mainly in groups of students from college or musicians.Conclusions: Is necessary adjustments in hearing health policy for an wide early identification of CSNE in at risk populations for the identification of the hidden hearing loss and fight for its damage regulation. (AU)


Asunto(s)
Humanos , Pérdida Auditiva , Ruido en el Ambiente de Trabajo , Células Ciliadas Ampollares , Cóclea , Biomarcadores
12.
Artículo en Inglés | MEDLINE | ID: mdl-37569060

RESUMEN

Hearing loss is a significant global health concern, affecting billions of people and leading to various physical, mental, and social consequences. This paper focuses on the risk of noise-induced hearing loss (NIHL) among specific healthcare professionals, especially ear surgeons, orthopaedic surgeons, dentists, and dental hygienists, who frequently use noisy instruments in their professions. While studies on these professionals' noise exposure levels are limited, certain conditions and factors could pose a risk to their hearing. Measures such as engineering and administrative controls, regular audiometric testing, and the use of hearing protection devices are crucial in preventing NIHL. Early detection and intervention are also vital to mitigate further damage. This paper proposes the results of a modified screening protocol, including questionnaires, audiometry, and additional diagnostic tests to identify and address potential hearing disorders. Specific healthcare professionals should remain aware of the risks, prioritize hearing protection, and undergo regular monitoring to safeguard their long-term auditory well-being.


Asunto(s)
Sordera , Pérdida Auditiva Provocada por Ruido , Ruido en el Ambiente de Trabajo , Enfermedades Profesionales , Humanos , Ruido en el Ambiente de Trabajo/prevención & control , Pérdida Auditiva Provocada por Ruido/diagnóstico , Pérdida Auditiva Provocada por Ruido/prevención & control , Audiometría , Audición , Enfermedades Profesionales/prevención & control , Atención a la Salud
13.
Med. segur. trab ; 69(271): 100-107, 30 jun 2023. tab
Artículo en Inglés | IBECS | ID: ibc-228166

RESUMEN

Introducción: La sinaptopatía coclear por exposición a ruido (SCER) es definida como una alteración funcional transitoria o permanente de las sinapsis en cinta de las células pilosas internas de la cóclea. Este artículo tiene el objetivo de comentar la utilidad de la identificación temprana de la pérdida auditiva oculta por SCER basado en marcadores audiológicos y en la metodología usada en grupos clínicos para su búsqueda.Método: Revisión de la literatura relacionada en bases científicas y la narración descriptiva de los resultados.Resultados: La SCER produce una pérdida auditiva oculta en pacientes con audiograma normal, principalmente obreros o individuos expuestos a niveles de ruido intenso. Los principales estudios de identificación de la SCER han sido realizados principalmente en estudiantes universitarios o en músicos.Conclusiones: Son necesarios ajustes en la política de salud auditiva para una amplia identificación temprana de la SCER en las poblaciones en riesgo para la pérdida auditiva oculta y luchar por una regulación del daño (AU)


Introduction: Cochlear synaptopathy after noise exposure (CSNE) is defined as the transient or permanent func-tional damage to the ribbon synapsis of the inner hair cells of the cochlea. This article has the objective of comment the usefulness of early identification of the hidden hearing loss after CSNE based on audiological markers and in changes in the clinical methodology in clinical groups for its searching.Method: Review of related literature in scientific databases and narrative description of results.Results: CSNE results in a hidden hearing loss in patients with normal pitch audiogram, mainly workers or indi-viduals exposed to high noise levels. The main studies of identification have been performed mainly in groups of students from college or musicians.Conclusions: Is necessary adjustments in hearing health policy for an wide early identification of CSNE in at risk populations for the identification of the hidden hearing loss and fight for its damage regulation (AU)


Asunto(s)
Humanos , Ruido en el Ambiente de Trabajo/efectos adversos , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/etiología
14.
Biotechnol Genet Eng Rev ; : 1-12, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37171371

RESUMEN

To explore the correlation between pure tone audiometry at all frequencies and distortion product otoacoustic emission (DPOAE) of hidden hearing loss (HHL). The workers exposed to noise from a factory in Zhangjiakou (noise exposure group, n = 73) and normal young and middle-aged people recruited by society (control group, n = 77) from August 2021 to April 2022 were study subjects, and all of them underwent audiometry in clinic. Compared with the control group, the noise exposure group had significantly higher threshold by extended high-frequency audiometry at all frequencies and higher signal-to-noise ratio threshold (SNR50) (all P < 0.001), and higher amplitude ratio of SP to AP of the waveform induced by short sound at 96, 90, 80 and 70 dB nHL and lower SNR at 6 kHz and above (all P < 0.05). The pure tone audiometry was correlated with DPOAE test results at the frequencies of 6, 8, 9 and 10 kHz (P < 0.001). The results of speech audiometry in noise were related to the average SNR of DPOAE test at each frequency (P = 0.026,r = -0.265). The ratio of SP to AP in electrocochleogram recorded at the intensity of 96 dB nHL was correlated with the average SNR at 6 kHz and above in DPOAE test (P = 0.018,r = -0.461), and with the average auditory threshold at each frequency in extended high-frequency audiometry (P = 0.032, r = 0.421). DPOAE has certain value in detecting HHL.

15.
Noise Health ; 25(116): 1-7, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006113

RESUMEN

Objectives: Noise-induced cochlear synaptopathy is studied extensively in animal models. The diagnosis of synaptopathy in humans is challenging and the roles of many noninvasive measures in identifying synaptopathy are being explored. The acoustic middle ear muscle reflex (MEMR) can be considered as a vital tool since noise exposure affects the low-spontaneous rate fibers that play an important role in elicitation of MEMR. The present study aimed at measuring MEMR threshold and MEMR strength. Design: The study participants were divided into two groups. All the participants had normal-hearing thresholds. The control group consisted of 25 individuals with no occupational noise exposure whereas noise exposure group had 25 individuals who were exposed to occupational noise of 85 dBA for a minimum period of 1 year. MEMR threshold and strength was assessed for pure tones (500 Hz and 1000 Hz) and broadband noise. Results: The results showed that the MEMR threshold was similar in both the groups. MEMR strength was reduced in noise exposure group compared to control group. Conclusions: The results of the study suggest that MEMR strength could be used as a sensitive measure in identifying cochlear synaptopathy with careful consideration of the stimulus characteristics.


Asunto(s)
Oído Medio , Pérdida Auditiva Provocada por Ruido , Ruido en el Ambiente de Trabajo , Animales , Humanos , Estimulación Acústica , Umbral Auditivo/fisiología , Cóclea , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Audición , Pérdida Auditiva Provocada por Ruido/diagnóstico , Pérdida Auditiva Provocada por Ruido/etiología , Músculos , Reflejo/fisiología , Ruido en el Ambiente de Trabajo/efectos adversos
16.
Int J Audiol ; : 1-11, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105144

RESUMEN

OBJECTIVE: To investigate the extent to which Headphone Accommodations in Apple AirPods Pro attend to the hearing needs of individuals with normal audiograms who experience hearing difficulties in noisy environments. DESIGN: Single-arm interventional study using acoustic measures, speech-in-noise laboratory testing, and real-world measures via questionnaires and ecological momentary assessment. STUDY SAMPLE: Seventeen normal-hearing individuals (9 female, 21-59 years) with self-reported hearing-in-noise difficulties. RESULTS: Acoustic measures showed that, relative to unaided, AirPods Pro provided a SNR advantage of +5.4 dB. Speech intelligibility performance in laboratory testing increased 11.8% with AirPods Pro, relative to unaided. On average, participants trialling AirPods Pro in real-world noisy venues reported that their overall hearing experience was a bit better than without them. Five participants (29%) reported that they would continue using AirPods Pro in the future. The most relevant barriers that would discourage their future use were limited hearing benefit, discomfort, and stigma. CONCLUSIONS: Occasional use of AirPods Pro may help some individuals with normal audiograms ameliorate their speech-in-noise hearing difficulties. The identified barriers may inspire the development of new technological solutions aimed at providing an optimal management strategy for the hearing difficulties of this segment of the population.

17.
Front Neurol ; 14: 1071766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970519

RESUMEN

Introduction: The cocktail-party problem refers to the difficulty listeners face when trying to attend to relevant sounds that are mixed with irrelevant ones. Previous studies have shown that solving these problems relies on perceptual as well as cognitive processes. Previously, we showed that speech-reception thresholds (SRTs) on a cocktail-party listening task were influenced by genetic factors. Here, we estimated the degree to which these genetic factors overlapped with those influencing cognitive abilities. Methods: We measured SRTs and hearing thresholds (HTs) in 493 listeners, who ranged in age from 18 to 91 years old. The same individuals completed a cognitive test battery comprising 18 measures of various cognitive domains. Individuals belonged to large extended pedigrees, which allowed us to use variance component models to estimate the narrow-sense heritability of each trait, followed by phenotypic and genetic correlations between pairs of traits. Results: All traits were heritable. The phenotypic and genetic correlations between SRTs and HTs were modest, and only the phenotypic correlation was significant. By contrast, all genetic SRT-cognition correlations were strong and significantly different from 0. For some of these genetic correlations, the hypothesis of complete pleiotropy could not be rejected. Discussion: Overall, the results suggest that there was substantial genetic overlap between SRTs and a wide range of cognitive abilities, including abilities without a major auditory or verbal component. The findings highlight the important, yet sometimes overlooked, contribution of higher-order processes to solving the cocktail-party problem, raising an important caveat for future studies aiming to identify specific genetic factors that influence cocktail-party listening.

18.
Diagnostics (Basel) ; 13(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36900080

RESUMEN

This study aimed to determine (a) the influence of noise exposure background (NEB) on the peripheral and central auditory system functioning and (b) the influence of NEB on speech recognition in noise abilities in student musicians. Twenty non-musician students with self-reported low NEB and 18 student musicians with self-reported high NEB completed a battery of tests that consisted of physiological measures, including auditory brainstem responses (ABRs) at three different stimulus rates (11.3 Hz, 51.3 Hz, and 81.3 Hz), and P300, and behavioral measures including conventional and extended high-frequency audiometry, consonant-vowel nucleus-consonant (CNC) word test and AzBio sentence test for assessing speech perception in noise abilities at -9, -6, -3, 0, and +3 dB signal to noise ratios (SNRs). The NEB was negatively associated with performance on the CNC test at all five SNRs. A negative association was found between NEB and performance on the AzBio test at 0 dB SNR. No effect of NEB was found on the amplitude and latency of P300 and the ABR wave I amplitude. More investigations of larger datasets with different NEB and longitudinal measurements are needed to investigate the influence of NEB on word recognition in noise and to understand the specific cognitive processes contributing to the impact of NEB on word recognition in noise.

19.
J Clin Med ; 12(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36769387

RESUMEN

Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by an impaired transmission of sound from the cochlea to the brain. This defect can be due to a lesion or defect in the inner hair cell (IHC), IHC ribbon synapse (e.g., pre-synaptic release of glutamate), postsynaptic terminals of the spiral ganglion neurons, or demyelination and axonal loss within the auditory nerve. To date, the only clinical treatment options for ANSD are hearing aids and cochlear implantation. However, despite the advances in hearing-aid and cochlear-implant technologies, the quality of perceived sound still cannot match that of the normal ear. Recent advanced genetic diagnostics and clinical audiology made it possible to identify the precise site of a lesion and to characterize the specific disease mechanisms of ANSD, thus bringing renewed hope to the treatment or prevention of auditory neurodegeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes to repair damaged cells for the future restoration of hearing in deaf people are showing promise. In this review, we provide an update on recent discoveries in the molecular pathophysiology of genetic lesions, auditory synaptopathy and neuropathy, and gene-therapy research towards hearing restoration in rodent models and in clinical trials.

20.
Eur Arch Otorhinolaryngol ; 280(6): 2763-2772, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36525077

RESUMEN

PURPOSE: To explore the diagnostic auditory indicators of high noise exposure and combine them into a diagnostic model of high noise exposure and possible development of hidden hearing loss (HHL). METHODS: We recruited 101 young adult subjects and divided them according to noise exposure history into high-risk and low-risk groups. All subjects completed demographic characteristic collection (including age, noise exposure, self-reported hearing status, and headset use) and related hearing examination. RESULTS: The 8 kHz (P = 0.039) and 10 kHz (P = 0.005) distortion product otoacoustic emission amplitudes (DPOAE) (DPs) in the high-risk group were lower than those in the low-risk group. The amplitudes of the summating potential (SP) (P = 0.017) and action potential (AP) (P = 0.012) of the electrocochleography (ECochG) in the high-risk group were smaller than those in the low-risk group. The auditory brainstem response (ABR) wave III amplitude in the high-risk group was higher than that in the low-risk group. When SNR = - 7.5 dB (P = 0.030) and - 5 dB (P = 0.000), the high-risk group had a lower speech discrimination score than that of the low-risk group. The 10 kHz DPOAE DP, ABR wave III amplitude and speech discrimination score under noise with SNR = - 5 dB were combined to construct a combination diagnostic indicator. The area under the ROC curve was 0.804 (95% CI 0.713-0.876), the sensitivity was 80.39%, and the specificity was 68.00%. CONCLUSIONS: We expect that high noise exposure can be detected early with this combined diagnostic indicator to prevent HHL or sensorineural hearing loss (SNHL). TRIAL REGISTRATION NUMBER/DATE OF REGISTRATION: ChiCTR2200057989, 2022/3/25.


Asunto(s)
Sordera , Pérdida Auditiva Provocada por Ruido , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Ruido en el Ambiente de Trabajo , Adulto Joven , Humanos , Audición/fisiología , Ruido en el Ambiente de Trabajo/efectos adversos , Emisiones Otoacústicas Espontáneas , Audiometría , Pérdida Auditiva Sensorineural/diagnóstico , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Umbral Auditivo , Pérdida Auditiva Provocada por Ruido/diagnóstico , Pérdida Auditiva Provocada por Ruido/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...